SCADA System Upgrade of a Major Water System

John Walker, Regional Water Supply
Mark Robertson, Insyght Systems Inc.
Abstract

• A complete SCADA retrofit of two large Water Plants, plus over 70 remote facilities supplying drinking water to the City of London and 20 surrounding municipalities—approximately 400,000 people

• The area includes over 4,500 square km from Grand Bend, on Lake Huron to Port Stanley, on Lake Erie.
Abstract

- The new SCADA system includes controller and distributed I/O, operator interfaces, historical data collection, automated reporting, and document management systems
- Project requirements will be compared to actual implementation, with lessons learned.
Presentation Outline

• Who are we? (John and Mark)
• Project Drivers
• Project Goals and Targeted Benefits
• Implementation Strategy
• Final Construction Solution
• Significant Improvements Gained
• Lessons Learned
Presenters

- John Walker
 - Operations Manager
 - Regional Water Supply
 - SCADA Project Manager
- Mark Robertson
 - President
 - Insyght Systems Inc.
 - Sr. Project Manager
- On project from beginning to end
Elgin Area Primary Water Supply
Project Drivers

- Existing SCADA servers, software, and PLC’s were at the end of their asset life
- No longer able to get spare parts
- Unreliable wide area communication
- Increased demands by regulators for better operation
Project Goals and Targeted Benefits

- Up to date, reliable SCADA system
- Significantly better documentation of the SCADA system
- Implementation using SCADA standards
- Optimized water treatment plant automation strategies
- Much greater access to historical SCADA information
Implementation Strategy

- **SCADA Construction Contract**
 - $9 million contract
 - Includes 8 municipalities
 - Replacement of controllers and SCADA servers for 5 regional centrals
 - 2 large, 1 small water plant
 - 2 wastewater plants
 - 60 remote water and wastewater stations across 1,500 square miles (30x50 miles)

- **SCADA WAN Contract**
 - One tender
 - Third party WAN Provider
 - Over 100 WAN links
 - Five Contracts by SCADA Network
 - Performance Based contract
Lake Huron Primary Water Supply SCADA System

• Water Plant
 – Redundant SCADA Servers
 – 13 Operator View Clients
 – FactoryTalk Data Collection and Reporting Server
 – SDMS Server
 – Redundant ControlLogix
 – 20 Remote FLEX I/O systems using ControlNet Coax and Fiber
 – DeviceNet to power monitors
 – Wireless SCADA Client network everywhere

• Remote Sites
 – CompactLogix at 10 valve chambers, reservoirs, and water booster stations

FactoryTalk® AssetCentre

DeviceNet®

Copyright © 2011 Rockwell Automation, Inc. All rights reserved.
Typical Plant Architecture

Area 1
- **SCADA Server #1**
 - FT Directory Server
 - (1) HMI Server
 - (1) Data Server
 - RSLinx Enterprise
 - W2K3 SP1 Server O/S
 - Dual Xeon 2+GHz, 2G Ram
- **SCADA Server #2**
 - (User Supplied) Domain Controller
 - W2K3 Server O/S
 - DNS Server
 - DHCP Server
 - Pent 4 2+GHz, 512M Ram

Control Ethernet
- Control Room
- Lab Room
- Ports
- Chemical Room
- Switch
- Access Points
- 5 Clients

Corporate Ethernet
- SCADA Workstation
 - FTView SE Client
 - WinXP Pro
 - Pent. 2+GHz, 256M Ram
- Switch
- Fiber Optic Ethernet
- Distance 1 km

Area 2
- **SCADA Server**
 - (1) HMI Server
 - (1) HMI Client
 - (1) Data Server
 - RSLinx Enterprise
 - W2K3 SP1 Server O/S
 - Dual Xeon 2+GHz, 1G Ram

Low Lift Pump Station
- FTView SE Client to use Main HMI Server with ability to switch to Standalone as backup to loss connection to Main

SCADA Terminal Server & EDMS Server
- Windows Terminal Server
- SQL 2000
- FT Transaction Manager
- FT VantagePoint Server
- FT AssetCentre
- W2K3 SP1 Server O/S
- Dual Xeon 2+GHz, 2G Ram, RAID 5

Low Lift Pump Station
- CMPLX

Historical Data Backup Requirements
- SQL is to backup to a second SQL package off site through the Operations WAN on a daily basis

HMI System Parameters
- Control System
 - 600 Digital I/O Points
 - 250 Analog I/O Points
- Main HMI Server
 - Unlimited Display Count including Pop Up
 - 5000 Tags Total
 - 1000 Historical Tags
 - 1 single project with 2 areas
- Low Lift Pump Station
 - FTView SE Client to use Main HMI Server with ability to switch to Standalone as backup to loss connection to Main
- Historical Data Backup Requirements
 - SQL is to backup to a second SQL package off site through the Operations WAN on a daily basis
Elgin Area Primary Water Supply SCADA System

• Water Plant
 – Redundant SCADA Servers
 – 11 Operator View Clients
 – FactoryTalk Data Collection and Reporting Server
 – SDMS Server
 – Redundant ControlLogix
 – 12 Remote FLEX I/O systems using ControlNet Coax and Fiber
 – Modbus to Particle Counters
 – Wireless SCADA Client network everywhere

• Remote Sites
 – Low Lift
 • ControlLogix
 • Back up SCADA Server
 – Elgin Middlesex Pump Station
 • ControlLogix
 • Back up SCADA Server
 – CompactLogix at 3 valve chambers and surge tank

Copyright © 2011 Rockwell Automation, Inc. All rights reserved.
Municipality of Central Elgin SCADA System

- **SCADA Central**
 - Redundant SCADA Servers
 - 8 Operator View Clients
 - FactoryTalk Historian Server
 - SDMS Server
 - Automated Paging System
 - Remote Internet Access through corporate network to SCADA screens

- **20 Remote Facilities**
 - MicroLogix1100 at 10 wastewater pumping stations
 - MicroLogix1100 at 12 water valve chambers and towers
 - Upgraded SLC500 at small water plant
 - Upgraded SLC500 at small wastewater plant
City of St. Thomas SCADA System

- SCADA Central
 - Redundant SCADA Servers
 - 6 Operator View Clients
 - FactoryTalk Historian Server
 - SDMS Server
 - Automated Paging System
 - Remote Internet Access through corporate network to SCADA screens

- 20 Remote Facilities
 - MicroLogix1100 at 10 wastewater pumping stations
 - MicroLogix1100 at 12 water valve chambers and towers
 - Upgraded SLC500 at small water plant
 - Upgraded SLC500 at small wastewater plant

Copyright © 2011 Rockwell Automation, Inc. All rights reserved.
APAM SCADA System

• SCADA Central
 – Redundant SCADA Servers
 – 6 Operator View Clients
 – FactoryTalk Historian Server
 – SDMS Server
 – Automated Paging System
 – Remote Internet Access through corporate network to SCADA screens

• 12 Remote Facilities
 – MicroLogix1100 at 2 wastewater pumping stations
 – MicroLogix1100 at 10 water valve chambers and towers
Typical SCADA System Design

1. **SCADA (Ethernet)**
 - (SCADA HMI data)
 - **SCADA Servers**
 - **SCADA Web Server**
 - **Local SCADA Historical Data EDMS**

2. **Real Time Control (RTC) (Ethernet)**
 - (Real time control and data collection)
 - **Firewall(s)**
 - **Internet Link**
 - **Front End Communication Controllers (FECs)**

3. **Remote I/O Networks**
 - (real time control and data collection)
 - **Instrument Network (Fieldbus)**
 - (smart instruments, etc.)
 - **Instrument Network (Ethernet)**
 - (uninterruptible power supplies, energy management data, etc.)

4. **Wireless SCADA (Ethernet)**
 - (SCADA HMI data via wireless routers)

5. **Plant Operations/Security/Internet Access for WaterTrax (Ethernet)**
 - (desktop applications, email)

6. **Contract Operator and Regional Water Supply VPNs (Ethernet)**
 - (desktop applications, email)
Significant Improvements- SCADA Technology

- Hot standby SCADA Servers that actually work!
- Hot standby dual ControlLogix provide full redundancy for plant control
- Very reliable plant SCADA system
- Reliable wide area network links using Ethernet
- Backup local data storage at remote sites for regulatory reporting
- SCADA Document Management Systems (SDMS)
System Diagnostics
Significant Improvements - Operations

- Vastly improved chemical dosing control
- Improved filtration and backwash control features
- Better plant flow control
- Real time CT calculations for compliance reporting
- Much better alarm management
- Remote paging of alarms
- Remote access to SCADA system from anywhere, via Internet
Operational Improvements in Filtration
Significant Improvements - Data Management

- Automated off site historical data backups
- SQL database provides much improved data queries and reporting
- Local data storage at remote sites prevents data loss - which greatly helps with compliance reporting
- Access to historical data from RWS headquarters as well as at the plants
Instant Water Quality Information

Lake Huron WTP: Water Quality

Raw Water

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature WWL01_T1</td>
<td>℃</td>
<td>17.92</td>
</tr>
<tr>
<td>Chlorine Residual WWL01_A1</td>
<td>mg/L</td>
<td>0.38</td>
</tr>
<tr>
<td>North Flow LLP00_FT1</td>
<td>MLD</td>
<td>60.9</td>
</tr>
<tr>
<td>South Flow LLP00_FT2</td>
<td>MLD</td>
<td>59.9</td>
</tr>
<tr>
<td>Total Flow LLP00_FT3</td>
<td>MLD</td>
<td>116.0</td>
</tr>
<tr>
<td>Pressure LLP00_PT3</td>
<td>kPa</td>
<td>69</td>
</tr>
<tr>
<td>Conductivity LLP00_AT4</td>
<td>μS/cm</td>
<td>204.4</td>
</tr>
<tr>
<td>Turbidity LLP00_AT2</td>
<td>NTU</td>
<td>0.47</td>
</tr>
<tr>
<td>pH LLP00_AT3</td>
<td>pH</td>
<td>8.10</td>
</tr>
</tbody>
</table>

Filters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbidity FLT01_AT1</td>
<td>NTU</td>
<td>0.029</td>
</tr>
<tr>
<td>Particles FLT01_AT2</td>
<td>Counts/mL</td>
<td>1</td>
</tr>
<tr>
<td>Flow FLT01_FT1</td>
<td>MLD</td>
<td>9.2</td>
</tr>
<tr>
<td>Turbidity FLT02_AT1</td>
<td>NTU</td>
<td>0.031</td>
</tr>
<tr>
<td>Particles FLT02_AT2</td>
<td>Counts/mL</td>
<td>7</td>
</tr>
<tr>
<td>Flow FLT02_FT1</td>
<td>MLD</td>
<td>9.1</td>
</tr>
<tr>
<td>Turbidity FLT03_AT1</td>
<td>NTU</td>
<td>0.033</td>
</tr>
<tr>
<td>Particles FLT03_AT2</td>
<td>Counts/mL</td>
<td>8</td>
</tr>
<tr>
<td>Flow FLT03_FT1</td>
<td>MLD</td>
<td>8.5</td>
</tr>
<tr>
<td>Turbidity FLT04_AT1</td>
<td>NTU</td>
<td>0.040</td>
</tr>
<tr>
<td>Particles FLT04_AT2</td>
<td>Counts/mL</td>
<td>36</td>
</tr>
<tr>
<td>Flow FLT04_FT1</td>
<td>MLD</td>
<td>8.5</td>
</tr>
<tr>
<td>Turbidity FLT05_AT1</td>
<td>NTU</td>
<td>0.040</td>
</tr>
<tr>
<td>Particles FLT05_AT2</td>
<td>Counts/mL</td>
<td>36</td>
</tr>
<tr>
<td>Flow FLT05_FT1</td>
<td>MLD</td>
<td>8.5</td>
</tr>
<tr>
<td>Turbidity FLT06_AT1</td>
<td>NTU</td>
<td>0.056</td>
</tr>
<tr>
<td>Particles FLT06_AT2</td>
<td>Counts/mL</td>
<td>2</td>
</tr>
<tr>
<td>Flow FLT06_FT1</td>
<td>MLD</td>
<td>8.9</td>
</tr>
<tr>
<td>Turbidity FLT07_AT1</td>
<td>NTU</td>
<td>0.029</td>
</tr>
<tr>
<td>Particles FLT07_AT2</td>
<td>Counts/mL</td>
<td>2</td>
</tr>
<tr>
<td>Flow FLT07_FT1</td>
<td>MLD</td>
<td>8.3</td>
</tr>
<tr>
<td>Turbidity FLT08_AT1</td>
<td>NTU</td>
<td>0.026</td>
</tr>
<tr>
<td>Particles FLT08_AT2</td>
<td>Counts/mL</td>
<td>8</td>
</tr>
<tr>
<td>Flow FLT08_FT1</td>
<td>MLD</td>
<td>8.3</td>
</tr>
<tr>
<td>Turbidity FLT09_AT1</td>
<td>NTU</td>
<td>0.026</td>
</tr>
<tr>
<td>Particles FLT09_AT2</td>
<td>Counts/mL</td>
<td>8</td>
</tr>
<tr>
<td>Flow FLT09_FT1</td>
<td>MLD</td>
<td>8.3</td>
</tr>
</tbody>
</table>

Settled Water

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbidity CLF00_AT1</td>
<td>NTU</td>
<td>0.480</td>
</tr>
<tr>
<td>Particles CLF00_AT7</td>
<td>Cnts/mL</td>
<td>695</td>
</tr>
<tr>
<td>pH CLF00_AT2</td>
<td>pH</td>
<td>7.21</td>
</tr>
<tr>
<td>Chlorine Residual CLF00_AT3</td>
<td>mg/L</td>
<td>0.45</td>
</tr>
<tr>
<td>Level CLF00_LT1</td>
<td>m</td>
<td>1.37</td>
</tr>
<tr>
<td>Turbidity CLF00_AT4</td>
<td>NTU</td>
<td>0.380</td>
</tr>
<tr>
<td>Particles CLF00_AT8</td>
<td>Cnts/mL</td>
<td>357</td>
</tr>
<tr>
<td>pH CLF00_AT5</td>
<td>pH</td>
<td>7.22</td>
</tr>
<tr>
<td>Chlorine Residual CLF00_AT6</td>
<td>mg/L</td>
<td>0.45</td>
</tr>
<tr>
<td>Level CLF00_LT2</td>
<td>m</td>
<td>1.35</td>
</tr>
</tbody>
</table>

Clear Well

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine Residual CLW01_AT2</td>
<td>mg/L</td>
<td>1.24</td>
</tr>
<tr>
<td>Level CLW01_LT1</td>
<td>m</td>
<td>3.29</td>
</tr>
<tr>
<td>Chlorine Residual CLW02_AT2</td>
<td>mg/L</td>
<td>1.41</td>
</tr>
<tr>
<td>Level CLW02_LT1</td>
<td>m</td>
<td>3.12</td>
</tr>
</tbody>
</table>

Plant Discharge

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbidity HLP00_AT2</td>
<td>NTU</td>
<td>0.029</td>
</tr>
<tr>
<td>pH HLP00_AT3</td>
<td>pH</td>
<td>7.56</td>
</tr>
<tr>
<td>Conductivity HLP00_AT4</td>
<td>μS/cm</td>
<td>245</td>
</tr>
<tr>
<td>Pressure HLP00_PT1</td>
<td>kPa</td>
<td>1710</td>
</tr>
<tr>
<td>Chlorine Residual HLP00_AT1</td>
<td>mg/L</td>
<td>1.26</td>
</tr>
<tr>
<td>Flow HLP00_FT1</td>
<td>MLD</td>
<td>104.6</td>
</tr>
<tr>
<td>Chlorine Residual HLP00_AT6</td>
<td>mg/L</td>
<td>1.25</td>
</tr>
<tr>
<td>Flow HLP00_FT2</td>
<td>MLD</td>
<td>8.8</td>
</tr>
<tr>
<td>Total Flow HLP00_FT2</td>
<td>MLD</td>
<td>104.6</td>
</tr>
</tbody>
</table>

Unack Aim: 0, Sup: 0
Elgin Area WTP: Particle Counters

Filter 01 Particle Counter FLT01_AT2

<table>
<thead>
<tr>
<th>Physical Channels</th>
<th>Size (µm)</th>
<th>Value</th>
<th>Virtual Channels</th>
<th>Size (µm)</th>
<th>Value</th>
<th>ANN Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH1</td>
<td>2</td>
<td>18</td>
<td>DC1</td>
<td>2</td>
<td>18</td>
<td>Predicted</td>
</tr>
<tr>
<td>CH2</td>
<td>3</td>
<td>12</td>
<td>DC2</td>
<td>3</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>CH3</td>
<td>5</td>
<td>7</td>
<td>DC3</td>
<td>3</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>CH4</td>
<td>7</td>
<td>10</td>
<td>DC4</td>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>CH5</td>
<td>10</td>
<td>15</td>
<td>DC5</td>
<td>7</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>CH6</td>
<td>15</td>
<td>25</td>
<td>DC6</td>
<td>10</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>CH7</td>
<td>25</td>
<td>100</td>
<td>DC7</td>
<td>2</td>
<td>15</td>
<td>29</td>
</tr>
<tr>
<td>CH8</td>
<td>100</td>
<td>0</td>
<td>DC8</td>
<td>25</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

Unit Diagnostics
- Cell Condition: 97%
- Flow Rate: 100.0 mL/min
- Frequency: 60 s
- Mode: Online

Filter 02 Particle Counter FLT02_AT2

<table>
<thead>
<tr>
<th>Physical Channels</th>
<th>Size (µm)</th>
<th>Value</th>
<th>Virtual Channels</th>
<th>Size (µm)</th>
<th>Value</th>
<th>ANN Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH1</td>
<td>2</td>
<td>3</td>
<td>DC1</td>
<td>2</td>
<td>3</td>
<td>Predicted</td>
</tr>
<tr>
<td>CH2</td>
<td>3</td>
<td>5</td>
<td>DC2</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CH3</td>
<td>5</td>
<td>7</td>
<td>DC3</td>
<td>3</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>CH4</td>
<td>7</td>
<td>10</td>
<td>DC4</td>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>CH5</td>
<td>10</td>
<td>15</td>
<td>DC5</td>
<td>7</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>CH6</td>
<td>15</td>
<td>25</td>
<td>DC6</td>
<td>10</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>CH7</td>
<td>25</td>
<td>100</td>
<td>DC7</td>
<td>2</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>CH8</td>
<td>100</td>
<td>0</td>
<td>DC8</td>
<td>25</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

Unit Diagnostics
- Cell Condition: 90%
- Flow Rate: 100.0 mL/min
- Frequency: 60 s
- Mode: Online

Filter 03 Particle Counter FLT03_AT2

<table>
<thead>
<tr>
<th>Physical Channels</th>
<th>Size (µm)</th>
<th>Value</th>
<th>Virtual Channels</th>
<th>Size (µm)</th>
<th>Value</th>
<th>ANN Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH1</td>
<td>2</td>
<td>3</td>
<td>DC1</td>
<td>2</td>
<td>3</td>
<td>Predicted</td>
</tr>
<tr>
<td>CH2</td>
<td>3</td>
<td>5</td>
<td>DC2</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CH3</td>
<td>5</td>
<td>7</td>
<td>DC3</td>
<td>3</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>CH4</td>
<td>7</td>
<td>10</td>
<td>DC4</td>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>CH5</td>
<td>10</td>
<td>15</td>
<td>DC5</td>
<td>7</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>CH6</td>
<td>15</td>
<td>25</td>
<td>DC6</td>
<td>10</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>CH7</td>
<td>25</td>
<td>100</td>
<td>DC7</td>
<td>2</td>
<td>15</td>
<td>51</td>
</tr>
<tr>
<td>CH8</td>
<td>100</td>
<td>0</td>
<td>DC8</td>
<td>25</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

Unit Diagnostics
- Cell Condition: 95%
- Flow Rate: 100.0 mL/min
- Frequency: 60 s
- Mode: Online

Filter 04 Particle Counter FLT04_AT2

<table>
<thead>
<tr>
<th>Physical Channels</th>
<th>Size (µm)</th>
<th>Value</th>
<th>Virtual Channels</th>
<th>Size (µm)</th>
<th>Value</th>
<th>ANN Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH1</td>
<td>2</td>
<td>3</td>
<td>DC1</td>
<td>2</td>
<td>3</td>
<td>Predicted</td>
</tr>
<tr>
<td>CH2</td>
<td>3</td>
<td>5</td>
<td>DC2</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CH3</td>
<td>5</td>
<td>7</td>
<td>DC3</td>
<td>3</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>CH4</td>
<td>7</td>
<td>10</td>
<td>DC4</td>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>CH5</td>
<td>10</td>
<td>15</td>
<td>DC5</td>
<td>7</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>CH6</td>
<td>15</td>
<td>25</td>
<td>DC6</td>
<td>10</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>CH7</td>
<td>25</td>
<td>100</td>
<td>DC7</td>
<td>2</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>CH8</td>
<td>100</td>
<td>0</td>
<td>DC8</td>
<td>25</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

Unit Diagnostics
- Cell Condition: 81%
- Flow Rate: 100.0 mL/min
- Frequency: 60 s
- Mode: Sampling Mode
Lessons Learned- WAN

• Detailed scope of work
 – Ensure uptime requirements are met without conditions
• Service provider should be experience in municipal/industrial applications – not just residential!
• Contract should have an ‘out clause’ or have a 1 + 4 year frame.
• Beware of Latency!
Lessons Learned - Technology

• Don’t make assumptions
 – Alarm/event viewer

• Operations input during design and implementation process is critical and was missing because of Contract Operations relationship

• Ensure scope of work is highly detailed
 – Time stamp issues – all process logs should be started at the same time!
 – Time interval issues – e.g. 5 minutes on the minute!
 – Engineering units – ensure they are the same and all present!
Lessons Learned- Contract Management

- Be aware that scope changes = schedule increase
- Money = time to complete
- Need better leverage to keep Contractors on schedule
- Leading edge vs. bleeding edge
John Walker, Regional Water Supply
Mark Robertson, Insyght Systems Inc.