CT438 Intelligent Motor Control as a Competitive Advantage
Maximizing the Use of Smart Network Enabled Motor Control Devices

William Martin
Program Manager – Networked Components
May 2018
Agenda

- Review Wire Reduction Practices to Minimize Panel Cost
- Use Data to Maximize Production Efficiency
- Use Integrated Architecture Tools to Turn Data into Information
Agenda

Review Wire Reduction Practices to Minimize Panel Cost

Use Data to Maximize Production Efficiency

Use Integrated Architecture Tools to Turn Data into Information
Wire Reduction Practices

1. 7 - 11 lb-in
2. 7 - 11 lb-in
3. 9 - 22 lb-in
4. 5 - 7 lb-in
5. 9 - 22 lb-in
6. 5 - 7 lb-in

Replacement Contactor

<table>
<thead>
<tr>
<th>Coil Modules</th>
<th>Contactor</th>
</tr>
</thead>
<tbody>
<tr>
<td>193-EIO-CM-C23</td>
<td>100-C09</td>
</tr>
<tr>
<td>193-EIO-CM-C55</td>
<td>100-C30</td>
</tr>
<tr>
<td></td>
<td>100-C05</td>
</tr>
</tbody>
</table>
Agenda

Review Wire Reduction Practices to Minimize Panel Cost

Use Data to Maximize Production Efficiency

Use Integrated Architecture Tools to Turn Data into Information
Smart Motor Controls Have Data

- **Real-time Data**
 - Current / %FLA
 - Voltage
 - Imbalance
 - % Thermal Capacity Utilization
 - Ground Fault Current

- **Historical Data**
 - Trip Log
 - Event Log
 - Snapshot Log

- **Operational Data**
 - Operating Hours
 - Number of Starts

- **Projected Data**
 - Time to Trip
 - Time to Reset

- **Energy Data**
 - kWh
 - kW Demand
Understanding Real-time Data

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>% Thermal Capacity Utilization</td>
<td>the simulated heat content of a motor; overload relays trip when this value equals 100%</td>
</tr>
<tr>
<td>2</td>
<td>% Full Load Amps</td>
<td>the actual motor current compared to the motor rating; overload, jam/locked rotor, stall, and under load protection are based on this value</td>
</tr>
<tr>
<td>3</td>
<td>Ground Fault Current</td>
<td>current leaking to earth ground in a balanced 3-phase power system; due to winding break down or internal arcing</td>
</tr>
<tr>
<td>4</td>
<td>Imbalance</td>
<td>maximum deviated line voltage/current compare against the average 3-phase voltage/current; used in phase loss protection</td>
</tr>
<tr>
<td>5</td>
<td>Current / Voltage</td>
<td>magnitude of electrical energy going to the motor; fundamental values for the calculations above</td>
</tr>
</tbody>
</table>
Understanding Projected & Operational Data

1. **Time to Trip** – *the time remaining before the overload relay trips on thermal overload*

2. **Time to Reset** – *the time that the motor needs to cool before a reset command can be accepted*

3. **Operating Hours** – *the number of hours a motor has been running; can be used for proactive motor maintenance procedures*

4. **Number of Starts** – *the number times a motor has started; can be used for proactive motor maintenance procedures*
Understanding Projected & Operational Data

1. **Snapshot Log** – *the RMS current and voltage data at the time of a trip event*

2. **Trip / Warning Log** – *a historical list of records for recent trip and warning events that are time & date stamped*

3. **Sequence of Events Log** – *a list of every event that occurred to the monitoring device (i.e. relay energized, digital input active, power up, warning event, etc…)*
1. kW, kVAR, PF – magnitude of electrical power going to the motor; reports when the electric motor is mechanically loaded

2. kWh, kW Demand, PF – the amount of electrical energy that the utility will bill you for
Agenda

- Review Wire Reduction Practices to Minimize Panel Cost
- Use Data to Maximize Production Efficiency
- Use Integrated Architecture Tools to Turn Data into Information
Demonstration

ACME Mixing System
Thank You!