Recent ActivityRecent Activity

Will Big Data Disappear?

For Industrial IoT applications, Big Data will increasingly be replaced with contextualized, structured data. And here’s why.

Industrial systems have data continually streaming from devices, controllers, historians, databases, and industrial computers. Data can also be locked up in closed, proprietary systems.

The promise of The Connected Enterprise is to transform this data into actionable insights to increase productivity and create new business value – including faster time-to-market, operational productivity, asset performance, and enterprise risk management.

How Much Is Too Much?

It is easy to amass Big Data in industrial applications.

Because it’s possible, the thought right now is to gather every bit of data from everywhere, store it in a data lake or database, and then utilize artificial intelligence (AI), machine learning and data science to extract actionable insights.

The downside can be too much data and too little insight.

Data volumes can quickly get into petabytes (a petabyte is 1015 bytes or 1000 Terabytes). Here’s how quickly that adds up: An oil and gas company can collect 500 GB of data per day from a single compressor, and data volumes can easily exceed a petabyte in one year.

If you’re downloading and playing one petabyte of MP3 encoded songs it will take about 2,000 years to play your entire list.

Downside of Data

When there’s too much Big Data, the time to derive value and the cost for storing and processing Big Data can be significant, and companies are discovering that unstructured Big Data is difficult to work with.

For industrial IoT applications, we recommend a different approach:

  • First, identify the desired business outcomes from the data
  • Then, leverage the knowledge of domain experts to select the most likely data that drives these business outcomes
  • Finally, match the appropriate data processing and analytics to processing data for business value

In this scenario, the role of domain experts in identifying and contextualizing data in industrial systems is as important as the role of data scientists in industrial IoT.

This is a simplified version of how Big Data becomes Smart Data.

Transforming Raw Data into Smart Data

In general, there are three levels of data processing:

  1. Device: Simple limit checking can provide useful insights into a device’s operation.
  2. System: Derive insights such as tension in a paper web that’s likely to result in a web break in a few cycles.
  3. Enterprise: Selected contextualized data, or Smart Data, from the OT environment can be analyzed and combined with data from the other parts of the enterprise to develop data mash ups or dashboards that deliver actionable insights.

Analytics and AI/machine learning at each of these levels can optimize processes and operations in industrial plants to deliver more productivity.

What’s Next

Big Data in industrial IoT applications will increasingly get replaced with Smart Data.

Industrial IoT solutions will leverage the scalable computing available at the device, system and enterprise levels to implement solutions that deliver business value such as descriptive, diagnostic, predictive and prescriptive analytics at the Edge and in the Cloud.

Therefore, it will become even more important for companies to use a combination of Smart Data, scalable analytics and Big Data for business outcomes.

Sujeet Chand
Sujeet Chand
Senior Vice President of Strategic Development and Chief Technology Officer, Rockwell Automation

Subscribe to Rockwell Automation and receive the latest news, thought leadership and information directly to your inbox.

Recommended For You