Independent cart technology solutions are the next step in motion control, eliminating the rotary driven chains, belts, and gears of the past.
Industrial robots are ubiquitous in automotive body shops and have enabled significant productivity gains over the past five decades.
But the truth is, robotic technology is only as efficient as the conveyance systems transferring the car chassis. And in many automotive plants today, inefficient transfer systems are the major obstacle to improving performance.
The Problem with Conventional Conveyance Technology
In fact, both throughput and flexibility are limited by conveyance technology common in automotive manufacturing.
First, existing chain conveyors, roller-beds – and even skillet conveyors – typically run at fixed speeds and often at fixed pitch.
In an automotive assembly plant, this means the entire transfer system is continuously energized and running at the same speed.
The carriers cannot accelerate, decelerate, and precisely position a specific chassis based on the completion of a process step.
While some conventional systems allow for variation in “pitch” or distance between the movers, in many situations, that distance cannot be easily modified to accommodate multiple model types.
In addition, traditional conveyers are based on complex, mechanical designs comprised of chains, belts, rollers, and gears – and sometime hundreds of wear components.
These large, complicated solutions are not only difficult to modify – but are also prone to maintenance and unscheduled downtime.
Perhaps most significantly, conventional friction-based transfer systems rely on rotary motor technology.
Rotary motors intrinsically add inertia in linear applications, introduce multiple mechanical components – and limit improvements in speed and acceleration.
How Can Automakers Improve the Performance of Assembly Conveyance Systems?
New advances in independent cart conveyance – based on linear motor technology – are enabling impressive performance gains.
How? Linear motor technology allows conveyor modules to be configured end-to-end, creating an electro-magnetic force to propel carriers much faster than traditional systems.
And because linear motors have no contacting or wear components, maintenance is minimal.
But linear motors are just part of the story. Intelligent motion control is critical to improved productivity, flexibility, and sustainability.
Take a look at the PULSE carrier conveyance system, introduced by Kuka Systems, an international supplier of automation systems for the automotive industry. Designed for automotive car body assembly lines, the conveyor utilizes linear synchronous motor technology from MagneMotion®.
Using embedded position sensors and control software enables independent control over each carrier on the track. Accelerations, decelerations, velocities, and positions are programmable. Instead of moving at a fixed speed, vehicle body sections can quickly advance through robotic workstations as process steps are completed.
The result? A “pitchless” system that is more energy efficient and 30% faster than conventional friction-based transfer systems. And since the speed boost allows for greater use of industrial robots and other process equipment, the overall system footprint is much smaller than traditional systems.
Also, the highly configurable system can be adapted to handle multiple model types – and can be expanded cost effectively, thanks to modularity.
Independent Cart System Benefits |
|
Higher Throughput |
Fewer mechanical components and linkages. Higher accelerations (>10g) and speeds (>5m/s) combined with fully controlled motion profiles for higher throughput |
Unlimited Flexibility |
Each moving cart is controlled independently allowing for flexible mechanical pitch enabling the same machine to handle multiple package/format sizes at once and fully controlling product motion |
Constant Package Tracking |
Integral track and trace. Software controlled carts with precise knowledge of cart position eliminates need for external sensing and complex tracking solutions |
Increased Uptime |
Elimination of mechanical linkages and components allow minimal number of moving parts reducing overall downtime, maintenance and energy consumption |
Smaller Footprint |
Technology allows to combine all product formats in one machine type within a much smaller footprint |
Discover how independent cart technology is transforming body shops and other automotive applications.