

Type Encoding of Logix Structures

in CIP Data Table R/W

(3-Nov-06, Rev. 1.2)

RA Technologies Copyright ©2006 Rockwell Automation p1 of 11

Type Encoding of Logix Structures in CIP Data Table R/W

Type Encoding of Logix Structures in CIP Data Table R/W

Logix products support the following communication services to access named data (Tags): CIP
Data Table Read and CIP Data Table Write (CIP DT R/W). These services contain an
abbreviated type code as part of the service data. This document is an aid to users who need to
compute the abbreviated type code of a Logix data structure for these services.

 “CIP” refers to the application-level “Common Industrial Protocol” shared between
ControlNet, DeviceNet, EtherNet/IP, and Componet. The CIP Standard is available from ODVA,
the Open Device Vendor Association (www.odva.org). The calculation of the structure
abbreviated type code for the vendor-specific CIP DT R/W services uses the standard CRC
algorithm (CRC-16 polynomial) described in the “CIP Common” specification (Appendix C:
Data Management, section C-7), but the calculation is performed on a vendor-specific “Type
Encoding String” rather than a CIP standard type encoding string.

This abbreviated type code can also be obtained without calculation from:

1. the reply packet of a CIP Data Table Read of a structure Tag, or
2. the Logix structure template (refer to “LDA manual” below).

Note: This document was originally intended as an appendix to the “Logix Data Access
Reference Manual”, publication 1756-RM005A-EN-E. Please refer to that document for further
information on the CIP services and data types supported by the Rockwell Automation Logix
family of products. This “LDA manual” is available for download from the www.ab.com website.

As shown in the “CIP Commands” section of the “LDA manual”, the CIP DT R/W service data
includes the named data (Tag) along with the Abbreviated Data Type. Abbreviated Data Types
are described in the “Data Type Reporting” section of the LDA manual. This type code is used to
check that the data type of the Tag matches at the client and server. Note that the structure type
code, as a CRC, is not totally unique to that structure. The type code would likely change if the
structure data type is modified, allowing the client or server to detect a mismatch, however, the
type code does not completely guarantee uniqueness.

Logix data structures are mixed collections of

• atomic types; e.g. SINT, INT, DINT, REAL, etc.
• arrays of any type, atomic or structure.
• other structures

Logix data structures are categorized as:
• Predefined Data Types (PDT); e.g. Counter, Timer, PID, etc. (including String).
• Module-Defined Data Types (MDT); created by the module’s configuration profile.
• User-Defined Data Types (UDT); a data structure created by the user.

*** NOTE ***

This document only applies to UDT structures, and only those UDTs without hidden
members (except for BOOL – see below) and without nested PDTs or MDTs.

PDT and MDT structures can contain hidden members, and can change over time, and are
therefore not addressed by this document. It’s also possible for a user to insert a hidden member

RA Technologies Copyright ©2006 Rockwell Automation p2 of 11

http://www.odva.org/
http://www.ab.com/

Type Encoding of Logix Structures in CIP Data Table R/W

into a UDT by importing a modified L5K export file, but this document does not address UDTs
that have been modified in that manner. BOOL are implemented either as a hidden SINT or a
hidden 64-bit array. This is further explained in the examples to follow.

Logix structure data types are shown below as seen in the organizer view of a RSLogix5000
project. This example is from a project where the user has created a UDT (STRUCT_A), and a
1756-OF8 module has been added to the system, automatically creating the OF8 Input, Output,
and Config MDTs. The PDT (Predefined) list is not expanded below, but includes over 80
structures. A STRING is a form of UDT.

In Logix, the structure data type is described in an ASCII Type Encoding String containing:

• Name of structure
• Name of member structures
• Name of member data types (e.g. SINT, DINT, TIMER, etc)
• Comma delimiters between each element of the string

The order of the elements in the Type Encoding String is based on the order of the data in the
structure template, which is also the order of data in Logix memory and in the CIP DT R/W
packet. Typically, for UDTs, this is the same as the order of the structure members as they
appear in the RSLogix5000 Data Monitor view, but that may not always be the case. The order
of data can be confirmed by reading the structure template (see LDA manual), or viewing the
L5K export file, and checked whenever needed. A change in order of members may not always
result in a different abbreviated type code.

Data is located in Logix memory according to certain alignment rules:

 Structures, Arrays, DINT, and REAL begin and end on 32-bit word boundaries
 INTs are on 16-bit word boundaries.
 SINTs are on 8 bit word boundaries
 BOOLs of 8 or less are packed into a SINT.
 BOOLs of more than 8 are packed into a 64-bit array, BOOL[64], with 32 bit alignment.

The data in the CIP DT R/W packet is the same as in Logix memory, including pad bytes
between data members which result from this alignment.

RA Technologies Copyright ©2006 Rockwell Automation p3 of 11

Type Encoding of Logix Structures in CIP Data Table R/W

The structure Type Encoding String is constructed as follows

1. The ASCII string starts with the name of the structure.
2. Concatenate the names of the data types of the members of the structure in their order

in the structure, each separated by a comma.
3. BOOL are mapped to a hidden SINT or 64-bit array. Adjacent BOOL of 8 or less are

replaced with “SINT” type in the string. Adjacent BOOL of more than 8 are replaced
with a 64-bit array and “BOOL[64]” is included in the string.

4. Each nested structure is indicated by the structure name followed by the names of the
data type of its members.

5. Each nested array is indicated by the name of the data types of its members, followed
by the array size in brackets. Only single dimension arrays can be nested in Logix
structures. For arrays of structures, the structure members are inserted between the
structure name and the bracket, without a comma ahead of the bracket.

Note: Because the name of the structure data type and its nested structures are included in
the Type Encoding String, these names have to be known in the both client and server.

The “abbreviated type code” is the CRC calculated over the Type Encoding String (including
comma delimeters, but not including quotes).

Example Type Encoding Strings

Type Encoding Strings can get complicated, especially with nested UDTs and Arrays. Below is
an example to illustrate the construction of the String for a UDT with nested UDTs.

Three UDT’s are created in an RSLogix5000 project, as defined below. UDT2 includes UDT3
as a member, and UDT1 includes both UDT2 and UDT3 as members.

UDT1 contains a UDT2 and an array of UDT3

RA Technologies Copyright ©2006 Rockwell Automation p4 of 11

Type Encoding of Logix Structures in CIP Data Table R/W

UDT2 contains UDT3 and an array of UDT3

UDT3 does not contain any other UDTs

This is a screenshot view of UDT1 data type in RSLogix5000 Data Monitor, expanded to show
the members and sub-members

When the project is saved as an L5K file, these data types are described as follows:
 DATATYPE UDT1 (FamilyType := NoFamily)
 SINT U1A;
 SINT U1B[2];
 UDT2 U1C (Radix := Decimal);
 UDT3 U1D[4] (Radix := Decimal);
 END_DATATYPE

RA Technologies Copyright ©2006 Rockwell Automation p5 of 11

Type Encoding of Logix Structures in CIP Data Table R/W

 DATATYPE UDT2 (FamilyType := NoFamily)
 DINT U2A;
 SINT U2B[3];
 UDT3 U2C (Radix := Decimal);
 UDT3 U2D[2] (Radix := Decimal);
 END_DATATYPE

 DATATYPE UDT3 (FamilyType := NoFamily)
 SINT U3A;
 SINT U3B[4];
 END_DATATYPE

The UDT3 data type does not contain any other UDTs, so its Type Encoding String is created
from the above data types just by concatenating the UDT name with the data types of the
individual members:

“UDT3,SINT,SINT[4]”

The UDT2 data type contains UDT3. Its Type Encoding String is created in a similar manner,
concatenating the member types, but where UDT3 appears, the whole String for UDT3 is inserted.
For the array of UDT2, the array subscript is appended to the UDT3 String without a comma
separator.

“UDT2,DINT,SINT[3],UDT3,SINT,SINT[4],UDT3,SINT,SINT[4][2]”

The UDT1 data type contains both UDT2 and UDT3 as members. Its String is composed in the
same manner, inserting the whole UDT2 String above where it UDT2 appears.

“UDT1,SINT,SINT[2],UDT2,DINT,SINT[3],UDT3,SINT,SINT[4],UDT3,SINT,
SINT[4][2],UDT3,SINT,SINT[4][4]”

Note: If a Tag is created which is an array of UDT1, its data type is still the same as UDT1, and
the Type Encoding String is the same as UDT1.

If a new data type, UDT0, is created which is an array of 10 UDT1, its Type Encoding String
would differ from UDT1, as follows:

“UDT0,UDT1,SINT,SINT[2],UDT2,DINT,SINT[3],UDT3,SINT,SINT[4],UDT3,
SINT,SINT[4][2],UDT3,SINT,SINT[4][4][10]”

Note again how the array subscript is appended to the end, without a comma separator.

RA Technologies Copyright ©2006 Rockwell Automation p6 of 11

Type Encoding of Logix Structures in CIP Data Table R/W

In this example, the byte order is shown below in the expanded column, with “PAD” bytes
inserted since DINT must be aligned on a 32-bit word boundary, and the packet must contain
multiples of 32-bit words.

Data Monitor Byte order (without pad bytes)

(low byte first – little endian)
Padding of bytes in packet
(low byte left – high byte right)

SINT
SINT[
UDT2

2]

DINT
SINT[3]
UDT3
SINT
SINT[4]
UDT3[2]
SINT
SINT[4]

UDT3[4]
SINT
SINT[4]

SINT,
S

INT,SINT,

DINT,
SINT,SINT,SINT,

SINT,
SINT,SINT,SINT,SINT,

SINT,
SINT,SINT,SINT,SINT,
SINT,
SINT,SINT,SINT,SINT,

SINT,
SINT,SINT,SINT,SINT,
SINT,
SINT,SINT,SINT,SINT,
SINT,
SINT,SINT,SINT,SINT,
SINT,
SINT,SINT,SINT,SINT

00 00 00 00
11 22 00 00

44 33 00 00
55 66 77 00

88 00 00 00
99 aa bb cc

dd 00 00 00
ee ff 10 11
12 00 00 00
13 14 15 16

17 00 00 00
18 19 1a 1b
1c 00 00 00
1d 1e 1f 20
21 00 00 00
22 23 24 25
26 00 00 00
27 28 29 2a

The CRC calculation over the UDT1 Type Encoding String above produces the “abbreviated data
type” value of 0x5f58 which is highlighted in the packet trace below (along with pad bytes) of the
response packet to the CIP Read of UDT1 over EtherNet/IP.

00000000 0000 0000 bbcc 0055 11dd cc44 0000 0000 bbcc 0055 11dd cc77 0088 0000 4455 0000
00001100 0000 aa66 66ee 9977 0000 0000 4400 0066 ffbb 44aa 8822 9977 8855 aa11 8822 9977
00002200 8855 aa00 aaff 1122 0044 0044 cc00 bb77 0044 aaee cc00 5522 7711 bbee 5500 1188
00003300 1100 0000 1166 cc55 0000 0000 7700 0000 6666 0000 0000 0066 0022 00ff 0000 0000
00004400 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
00005500 0000 0000 0000 0000 0022 0000 aa11 0000 0044 0000 01 1101 11 99ee 0000 bb11 0000
00006600 5522 0000 5533 8822 cc 00 00 00 a0 02 58 5f 00 00 00 00
0070 11 22 00 00 44 33 00 00 55 66 77 00 88 00 00 00
0080 99 aa bb cc dd 00 00 00 ee ff 10 11 12 00 00 00
0090 13 14 15 16 17 00 00 00 18 19 1a 1b 1c 00 00 00
00a0 1d 1e 1f 20 21 00 00 00 22 23 24 25 26 00 00 00
00b0 27 28 29 2a

RA Technologies Copyright ©2006 Rockwell Automation p7 of 11

Type Encoding of Logix Structures in CIP Data Table R/W

The following screen shot is the RSLogix5000 Data Monitor view of a structure Tag named
“complex” of type “UDT1” with the data values in the packet above. It shows the hierarchy of
data in the structure and the corresponding order of bytes in the packet. Note the low-byte first
(little endian) order of the bytes as shown by the DINT member.

RA Technologies Copyright ©2006 Rockwell Automation p8 of 11

Type Encoding of Logix Structures in CIP Data Table R/W

Example Type Encoding Strings of the Addressing Examples in Chapter 2 of LDA Manual

Below are the view in the RSLogix5000 controller organizer, the view of each structure in
RSLogix5000 Data Monitor, the data type in the L5K export file, and the corresponding Type
Encoding String.

STRUCT_A

DATATYPE STRUCT_A (FamilyType := NoFamily)
 SINT ZZZZZZZZZZSTRUCT_A0 (Hidden := 1);
 BIT limit4 ZZZZZZZZZZSTRUCT_A0 : 0;
 BIT limit7 ZZZZZZZZZZSTRUCT_A0 : 1;
 DINT travel;
 DINT errors;
 REAL wear;
 END_DATATYPE

STRUCT_A Type Encoding String:

"STRUCT_A,SINT,DINT,DINT,REAL"

In this structure the BOOL are mapped to the hidden SINT and it is the SINT which is
included in the Type Encoding String.

RA Technologies Copyright ©2006 Rockwell Automation p9 of 11

Type Encoding of Logix Structures in CIP Data Table R/W

STRUCT_B

 DATATYPE STRUCT_B (FamilyType := NoFamily)
 SINT ZZZZZZZZZZSTRUCT_B0 (Hidden := 1);
 BIT pilot_on ZZZZZZZZZZSTRUCT_B0 : 0;
 INT hourlyCount[12];
 REAL rate;
 END_DATATYPE

STRUCT_B Type Encoding String:

"STRUCT_B,SINT,INT[12],REAL"

As with STRUCT_A, the BOOL is mapped to the hidden SINT and the SINT is included
in the Type Encoding String. The array of INT is included with the dimension of the
array in brackets.

STRUCT_C

DATATYPE STRUCT_C (FamilyType := NoFamily)
 SINT ZZZZZZZZZZSTRUCT_C0 (Hidden := 1);
 BIT hours_full ZZZZZZZZZZSTRUCT_C0 : 0;
 STRUCT_B today (Radix := Decimal);
 TIMER sampleTime (Radix := Decimal);
 COUNTER shipped (Radix := Decimal);
 END_DATATYPE

STRUCT_C Type Encoding String:

*** NOT ADDRESSED BY THIS DOCUMENT SINCE IT CONTAINS A TIMER
AND A COUNTER, BOTH OF WHICH ARE PREDEFINED (PDT)
STRUCTURES ***.

RA Technologies Copyright ©2006 Rockwell Automation p10 of 11

Type Encoding of Logix Structures in CIP Data Table R/W

STRUCT_D

DATATYPE STRUCT_D (FamilyType := NoFamily)
 INT myint;
 REAL myfloat;
 STRUCT_C myarray[8] (Radix := Float);
 PID mypid (Radix := Float);
 END_DATATYPE

STRUCT_D Type Encoding String:

*** NOT ADDRESSED BY THIS DOCUMENT SINCE IT CONTAINS
PREDEFINED (PDT) STRUCTURES ***

1. PID
2. TIMERS IN NESTED ARRAY OF STRUCT_C
3. COUNTERS IN NESTED ARRAY OF STRUCT_C

RA Technologies Copyright ©2006 Rockwell Automation p11 of 11

